Graphical Model | Network Model | |
---|---|---|
Nodes | Random | Fixed |
Edges | Fixed, express conditional independence | Random, express relation between nodes |
Models log odds of existences of edge between nodes $i$ and $j$:
$$ \log \frac{P \left( X_{ij} = 1\right)}{1 - P \left( X_{ij} = 1\right)} = \beta_i + \beta_j \quad \forall i \ne j $$ $$ \definecolor{lviolet}{RGB}{114,0,172} \definecolor{lgreen}{RGB}{45,177,93} \definecolor{lred}{RGB}{251,0,29} \definecolor{lblue}{RGB}{18,110,213} \definecolor{circle}{RGB}{217,86,16} \definecolor{average}{RGB}{203,23,206} $$Models log odds of existences of edge between nodes $i$ and $j$:
$$ \log \frac{ {\color{lred} P \left( X_{ij} = 1\right) }} {1 - {\color{lred} P \left( X_{ij} = 1\right)}} = \beta_i + \beta_j \quad \forall i \ne j $$Models log odds of existences of edge between nodes $i$ and $j$:
$$ \log \frac{ {\color{lred} p_{i,j} }} {1 - {\color{lred} p_{i,j} }} = \beta_i + \beta_j \quad \forall i \ne j $$The likelihood function for the $\beta$ model is given by
$$ p(x ; \beta) = \prod_{i < j} p_{i,j}^{x_{i,j}} \left( 1 - p_{i,j} \right)^{1-x_{i,j}} = \prod_{i < j} \left( \frac{ p_{i,j}}{1-p_{i,j}} \right)^{x_{ij}} \left( 1 - p_{i,j} \right) $$The likelihood function for the $\beta$ model is given by
$$ p(x ; \beta) = \prod_{i < j} p_{i,j}^{x_{i,j}} \left( 1 - p_{i,j} \right)^{1-x_{i,j}} = \prod_{i < j} \left( \frac{ p_{i,j}}{1-p_{i,j}} \right)^{x_{ij}} \left( 1 - p_{i,j} \right) $$Written in exponential family form:
$$ p(x ; \beta) = \exp \left( \sum_{i < j} x_{i,j} \log \frac{ p_{i,j}}{1-p_{i,j}} + \log(1+p_{i,j}) \right) $$Here: $$ {\scriptsize \begin{align} u_{12(ij)} &= \lambda_{ij} \\ u_{13(ik)} &= \left( \alpha_i + \theta \right) \times I(k=1) \\ u_{24(jl)} &= \left( \alpha_j + \theta \right) \times I(l=1) \\ u_{14(il)} &= \beta_i \times I(l=1) \\ u_{23(jk)} &= \beta_j \times I(k=1) \\ u_{34(kl)} &= \rho \times I(k=1,l=1) \\ \end{align} } $$